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Abstract. Smart contracts are programs executed on top of a blockchain
consensus protocol. Their compiled code (bytecode) is stored on the
blockchain and is immutable after deployment. They are self-enforcing
in the sense that any function call to a smart contract is executed by all
nodes on the network, ensuring that they all reach consensus about the
final state of the contract. To prevent denial-of-service attacks, such an
execution is costly by design. A “gas” cost is assigned to each bytecode
operation, roughly proportional to the resources required to execute it,
and any user who initiates a function call to a smart contract has to pay
the total gas cost of the resulting execution. On Ethereum alone, the
users pay an astounding gas cost of more than 4 billion USD/year.
Smart contracts are often written in high-level programming languages
such as Solidity and then compiled to bytecode before being deployed on
the blockchain. Thus, a natural compiler optimization problem arising in
this context is to produce efficient bytecode that minimizes the total gas
usage. A leading approach in this direction is superoptimization, which
considers every basic block of the smart contract separately and tries to
rewrite it as an equivalent block that uses as little gas as possible. The
current state-of-the-art tool is syrup 2.0, which encodes gas superop-
timization as Max-SMT and then relies on SMT-solvers to synthesize an
equivalent contract with optimized gas usage.
In this work, we make two observations: First, the performance of Max-SMT
declines significantly as block sizes increase. Thus, although syrup is able
to find an optimal rewriting for a small block with a dozen bytecode
operations, its output on blocks with hundreds or thousands of oper-
ations, when given any realistic timeout, is far from optimal. Second,
optimizations that can be applied to basic blocks are often local and
compositional, i.e. they rewrite several small and disjoint parts of the
block. Such locality is lost to Max-SMT solvers, mainly because it is un-
predictable and there are no clear ways on how one should cut blocks of
bytecode into smaller sub-blocks. To ameliorate these issues, we present
a simple dynamic programming algorithm that tries every possible divi-
sion of a block into sub-blocks, recursively calling syrup as a black box on
each sub-block. Surprisingly, this simple idea leads to highly significant
improvements in the gas usage, more than doubling the savings obtained
by syrup, and reducing the gas usage of real-world smart contracts by
11.23 percent.
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1 Introductory Blockchain Concepts

Blockchain. Blockchain is a family of distributed consensus protocols, first
designed by Satoshi Nakomoto as the underlying protocol of Bitcoin [14]. In
such protocols, our goal is to reach a consensus about an ordered sequence of
transactions. In Bitcoin, a transaction encodes transfers of money. When a user
creates a new transaction, they broadcast it to the whole network using a gossip
protocol. Every node on the network keeps track of the transactions they have
heard of (called the mempool) but does not consider them finalized until they are
added to the blockchain. A blockchain, as its name suggests, is a chain (singly-
linked list) of blocks, with each block Bi containing a sequence of transactions
⟨Txi,0, Txi,1, . . .⟩ and a pointer to the previous block Bi−1. See Figure 1. Every
node keeps track of a copy of the blockchain. To ensure consensus, appending
new blocks to the end of the chain is a costly endeavor, called mining. Suppose
the blockchain contains n blocks. A miner is a node that gathers unfinalized
transactions, bundles them in a block Bn+1 and attempts to append this block
to the end of the consensus blockchain. The block Bn+1 should also contain a
proof πn+1 certifying that the miner is permitted by the protocol to add this
block. In Bitcoin, one needs to solve a hard proof-of-work puzzle which is based
on inverting a hash function. When the puzzle is solved successfully, the miner
broadcasts their block Bn+1. The solution to the hash inversion puzzle serves as
πn+1. Every node then verifies the solution and adds the block to their copy of the
blockchain. See [12] for a more detailed treatment. Proof-of-work is not the only
consensus mechanism. There are many other well-established mechanisms [6, 4,
10], such as proof-of-stake [5] in which a miner’s chance of being permitted to
add the next block is proportional to their holdings in the currency.

Fig. 1. A simplified view of a blockchain when the block Bn+1 is appended.

Programmable Blockchains and Smart Contracts. While Bitcoin was the
first cryptocurrency based on a blockchain protocol, Ethereum [18] pioneered
the concept of smart contracts. A smart contract is a program that is stored on
the blockchain. Every node on the network keeps track of the state of every con-
tract. This is achieved by extending what a transaction can do. In programmable
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blockchains, a transaction can (i) transfer money, (ii) deploy a new smart con-
tract, providing its code – which will be saved on the blockchain as part of
the transaction, or (iii) call a function in a previously-deployed smart contract,
providing the arguments necessary for the function call.

Consensus. The blockchain protocol provides consensus on the history and
order of transactions. Thus, every node on the network has the same view of
the smart contracts, i.e. sees the same codes deployed by transactions on the
blockchain and sees the same function calls to each contract in the same order.
Therefore, each node can execute the transactions in the order they appear on
the blockchain and reach consensus about the state of every contract, e.g. values
of the variables internal to the contracts. This, together with the fact that smart
contracts can receive and hold money in the form of the base cryptocurrency,
allows one to implement real-world financial contracts as smart contracts. Of
course, the underlying programming language should be unambiguous and de-
terministic, ensuring that different nodes executing the same sequence of function
calls over the same contracts reach the same results. To achieve this, Ethereum
designed a virtual machine (EVM) that supports a completely-specified low-level
assembly-like bytecode format for writing smart contracts [18]. The EVM byte-
code language is Turing-complete [18]. In practice, developers write their smart
contracts in high-level languages, such as Solidity [7], and then a compiler, such
as solc, compiles it to EVM bytecode.

Gas. Since our language is Turing-complete, there is nothing to stop program-
mers from writing long-executing or even non-terminating contracts or contracts
that use a lot of storage. As the simplest example, one can write an infinite loop
while(true) {...} in a smart contract, deploy it on the blockchain, and then
create a transaction that invokes it. In such a scenario, when this invocation is
added to the blockchain, every node on the network will have to execute it, caus-
ing a deadlock. To avoid situations like this, Ethereum introduced the concept
of gas. Put simply, a gas cost is associated to every bytecode operation code
(opcode). The gas cost is meant to be proportional to the actual cost of execut-
ing the operation. The costs have fixed formulas and provided as a table in the
Ethereum Yellowpaper [18]. When a user creates a transaction that calls a func-
tion, they have to pay for the total gas usage of its execution, i.e. the sum of gas
costs of all invoked opcodes. More specifically, the user has to specify the maxi-
mum amount g of gas that may be used in their function call and the amount of
money p (in Ether) they are willing to pay per unit of gas. The transaction will
first take a deposit of g · p from the user and then start executing the desired
function call. If the transaction runs out of gas, i.e. the invocation requires more
than g units of gas, it will be reverted without refunding the deposit. Otherwise,
if it uses g ≤ g units of gas, the user pays g · p to the miners as a transaction fee
and the rest is refunded [18].

Related Works. Analyzing and reducing gas costs are central research problems
in the blockchain community. Out-of-gas errors are the source of many vulnera-
bilities and thus there are several tools focused on finding upper-bounds on the
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gas usage of smart contracts [15, 1, 3]. In 2023, on Ethereum alone, gas costs
were more than 4 billion USD [8]. Given this high cost, and the fact that gas
usage is defined for low-level bytecode operations whereas programmers write
their contracts in high-level languages such as Solidity, it is crucial that the
compiler optimizes for gas usage. Indeed, the standard Solidity compiler solc
has a flag –optimize which enables heuristics for optimizing the gas usage of the
resulting bytecode. The Solidity language documentation [7] also talks about gas-
hungry patterns and instructs programmers to avoid them in their code. There
are many works on layer-two protocols which aim to minimize the amount of
on-chain computation, i.e. gas-consuming calls to smart contracts, by moving
most of the protocol off-chain [17] or delaying and avoiding the execution as far
as possible [9].

Superoptimization. The current state-of-the-art in gas optimization by com-
pilers is the work [2] which provides a tool called syrup 2.0 that supports both
Solidity source code and EVM bytecode as its input and outputs gas-optimized
bytecode. Their approach is based on the concept of superoptimization [13]. Ba-
sically, the idea is to break the bytecode program down into its basic blocks,
i.e. maximal straight-line subprograms that do not contain branching or jumps.
Then, each basic block B is optimized separately by exhaustively trying all pos-
sible rewritings B′ that are equivalent to B and taking the one with the smallest
gas usage. Superoptimization is a well-known technique that has been imple-
mented in mainstream tools and compilers such as LLVM [11, 16] usually with
the goal of reducing runtime or memory usage. However, exhaustive search is far
from scalable and can only be applied to toy programs with tiny basic blocks.
For example, a C++ basic block containing the single operation x*=2 can easily be
rewritten as x«1, reducing its execution time, but as the size of the block grows
there will be a combinatorial explosion in the number of possible rewritings. In-
stead, [2] encodes the problem as Max-SMT and passes it to modern SMT-solvers.
This encoding, and the rewrite rules for obtaining equivalent basic blocks, are far
from trivial. Indeed, [2] provides several different encodings and experimentally
finds the best combinations. The reduction to Max-SMT is the key to syrup’s
scalability and enables huge savings in real-world gas costs of Ethereum smart
contracts.

Example. Consider a simple basic block in Solidity that performs the operation
y = x∧x. Here, x and y are integers and ∧ is the bitwise exclusive or operation.
Our goal is to compile this basic block to EVM bytecode. A naive compiler that
applies no optimization, such as solc with all optimizations turned off, would
provide the bytecode in Figure 2 (left). In EVM bytecode, PUSH adds a new
item to the top of the stack, POP removes the top item, SLOAD loads a word
from storage, DUP duplicates an item on the stack and SWAP swaps items in the
stack. As expected, XOR performs the bitwise exclusive or operation. Each of
these operations has a gas cost, which is fixed by the Ethereum Yellowpaper [18,
Appendix H]. In this case, the naive compilation will lead to a total gas cost of
1,420 for this basic block. In contrast, a compiler that realizes x∧x = 0 and thus
rewrites y = x∧x as y = 0 would not even need to perform the XOR operation.
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This leads to a much more gas-efficient bytecode such as the one in Figure 2
(center). This is the output of syrup and uses only 720 units of gas, almost
halving the execution cost. Finally, it is possible to further optimize even this
bytecode, obtaining the basic block in Figure 2 (right), which uses 706 units of
gas. Note that all three basic blocks of Figure 2 are semantically equivalent and
differ only in their gas usage.

PUSH1 0
SLOAD
PUSH1 0
SLOAD
XOR
PUSH1 1
DUP2
SWAP1

PUSH1 0
SLOAD
PUSH1 1
PUSH1 0
SWAP2
POP
SWAP1
SWAP1

PUSH1 0
SLOAD
PUSH1 1

Fig. 2. Three compilations of y = x∧x to EVM bytecode: naive (left), optimized (cen-
ter), and further optimized (right).

Our Contribution. In this work, we use syrup as a black box and design a
simple and elegant dynamic programming algorithm for optimizing the gas usage
of Ethereum smart contracts. Our algorithm is also a flavor of superoptimization,
i.e. it optimizes each basic block separately. We report significant improvements
in the gas usage of the resulting smart contracts, not only in comparison with
the unoptimized version, but also against syrup itself.

2 Our Algorithm

In this section, we present our simple dynamic programming algorithm. Our
approach is based on the two intuitive observations below.

Observation 1: Scalability. We observe that syrup works really well on small
basic blocks and often finds the optimal rewriting. However, this is no longer the
case when the basic block increases in size. For basic blocks with more than a
hundred bytecode operations, syrup rarely finds the optimal rewriting and often
produces extremely suboptimal results, even when given generous time limits of
several hours. This is not surprising since the problem is reduced to Max-SMT
and SMT-solvers are simply not scalable enough to handle large basic blocks.

Observation 2: Locality and Compositionality. Our second observation is
that gas-optimizing changes to basic blocks are often local and compositional.
For example, a block with thousands of operations will probably be optimizable
by hundreds of different local rewritings which are quite independent of each
other.
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Fig. 3. A basic block B (top) in which some portions (red) can be optimized to use
less gas (green).

More formally, let B = ⟨op1, op2, . . . , opn⟩ be a basic block consisting of n
EVM operations, g(B) =

∑n
i=1 g(opi) be its gas usage, and B∗ = Optimized(B)

be the optimal rewriting of B, i.e. the equivalent basic block that uses mini-
mal gas. Additionally, let B[i . . . j] be the sub-block of B from opi to opj . We
conjecture that in almost all cases, there is an index i such that

g(Optimized(B)) = g(Optimized(B[1 . . . i])) + g(Optimized(B[i+ 1 . . . n])).

In other words, B can be divided in two parts and each part can be (recursively)
optimized separately. This is shown in Figure 3. This intuition leads to two
challenges: (i) how to identify when this kind of compositionality is present, and
(ii) how to find the correct index i for dividing B in two parts. Our algorithm
sidesteps both of these difficulties by simply brute-forcing all possibilities.

Our Algorithm. We use syrup as a black box in our algorithm. Let B =
⟨op1, op2, . . . , opn⟩ be a basic block and syr(B) be the gas-optimized block ob-
tained by applying syrup to B. Instead of applying syrup directly to B, we can
first divide B in two parts B[1 . . . i] and B[i+1 . . . n] and then optimize each part
separately. We simply try this for all possible i, considering further sub-divisions
recursively. Formally, let leastGas(B) be the minimum amount of gas usage that
we can obtain by rewriting B to an equivalent basic block. We have:

leastGas(B) = min

{
g(syr(B)),

n−1
min
i=1

leastGas(B[1 . . . i]) + leastGas(B[i+ 1 . . . n])

}
.

This formula leads itself to dynamic programming and tracing the dynamic
programming steps can also help us find an equivalent block B∗ with g(B∗) =
leastGas(B). More specifically, for every sub-block B[i . . . j], we can find the best
optimization. This is shown in Algorithm 1. Note that our algorithm does not
guarantee that the resulting block will be globally optimal, but only that it
will use no more gas than syrup’s output. As we will see in Section 3, the
improvement is quite substantial in practice. Finally, we note that our algorithm
can easily be parallelized at lines 5 and 9.
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Algorithm 1 Our Algorithm: Dynamic Programming using syrup as a Blackbox
1: Input: A basic block B = ⟨op1, . . . , opn⟩ of n EVM bytecode operations
2: Output: A gas-optimized block B∗ which is equivalent to B
3: int leastGas[n][n] ▷ leastGas[i][j] holds leastGas(B[i . . . j])
4: block bestBlock[n][n] ▷ bestBlock[i][j] holds the best rewriting for B[i . . . j]
5: for all i ≤ j do
6: bestBlock[i][j]← syr(B[i . . . j]) ▷ Start with syrup’s output as the base case
7: leastGas[i][j]← g(bestBlock[i][j])
8: for 1 ≤ l ≤ n do ▷ l is the length of our sub-block
9: for 1 ≤ a ≤ n− l + 1 do ▷ a is the starting index of our sub-block

10: b← l + a− 1 ▷ b is the end index of our sub-block
11: for a ≤ i ≤ b do ▷ Try breaking the sub-block B[a . . . b] at index i
12: if leastGas[a][i] + leastGas[i+ 1][b] < leastGas[a][b] then
13: leastGas[a][b] = leastGas[a][i] + leastGas[i+ 1][b]
14: bestBlock[a][b] = bestBlock[a][i] · bestBlock[i+ 1][b]
15: ▷ The operator · represents concatenation of basic blocks.
16: return B∗ = bestBlock[1][n]

3 Experimental Results

In this section, we provide an experimental comparison between our algorithm
and syrup over real-world Ethereum smart contracts. We implemented our algo-
rithm in Python and integrated it with syrup 2.0 [2]. All results were obtained
on an Intel Xeon Gold 5317 machine (3.0 GHz, 12 cores, 18M cache) with 128
GB of RAM running Ubuntu 20.04.6 LTS. We performed gas optimization ex-
periments on the benchmark smart contracts from [2], which contain some of
the most widely-used real-world contracts on the Ethereum blockchain.

Benchmarks. We considered the 148 smart contracts of the benchmark suite
of [2]. According to [2], this suite contains a random sampling of the most
commonly-called smart contracts on the Ethereum blockchain. 128 of these con-
tracts are provided in the EVM bytecode format and match the exact versions
deployed on the blockchain. These deployed bytecodes were most likely obtained
by the developers compiling high-level Solidity code using a version of solc that
was available at the time of their deployment. The other 20 are provided as
Solidity source code. We compiled them to bytecode using solc. Overall, this
benchmark set consists of 22,136 basic blocks.

Gas Optimization Results. The total gas usage of unoptimized contracts
over all basic blocks was 1,972,141 units of gas. This was reduced to 1,889,918
units of gas when applying syrup 2.0. It was further reduced to 1,750,576 units
by our dynamic programming algorithm. Thus, syrup provides an overall gas
saving of 4.17 percent over the baseline, whereas our approach obtains a saving
of 11.23 percent (7.37 percent over syrup). More specifically, syrup succeeded
in improving the gas usage in 4,678 basic blocks, with an average improvement
of 21.40 percent over these 4,678 blocks. Our approach improved the gas usage
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in 5,877 basic blocks, with an average improvement of 30.52 percent over these
blocks. In comparison to syrup, our approach improved the gas usage in 4,328
basic blocks with the average improvement being 24.82 percent. Figures 4–5
visualize the data as histograms.
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Fig. 4. Histogram of gas improvements obtained by our approach over the unoptimized
smart contracts. The x axis is the percentage of improvement (bin size = 5%) and the
y axis is number of basic blocks.
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Fig. 5. Histogram of gas improvements obtained by our approach over syrup 2.0. The
x axis is the percentage of improvement (bin size = 5%) and the y axis is number of
basic blocks.

Summary. In summary, our simple dynamic programming more than doubles
the benefits of syrup. We obtained a 11.23 percent improvement in gas usage
over these standard benchmarks. We note that such an improvement is highly
significant since the total annual gas cost on Ethereum is more than 4 billion
USD.

4 Conclusion

Smart contract gas costs are a significant expense for Ethereum users, amounting
to more than 4 billion USD last year. In this work, we provided a simple dynamic
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programming approach to enhance superoptimization techniques for reducing
the gas usage of smart contracts. We implemented our approach and integrated
it with syrup 2.0, the current state-of-the-art gas optimizer for Ethereum smart
contracts. Over a benchmark set consisting of 148 real-world and commonly-
called smart contracts on the Ethereum blockchain, we observed that, amazingly,
our approach more than doubles the benefits of syrup, increasing the gas savings
from 4.17 percent to 11.23 percent.
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